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Analysis on the origin of directed current from a class of microscopic chaotic fluctuations

L. Y. Chew1 and Christopher Ting2,1

1Department of Physics, National University of Singapore, Singapore 117542
2Singapore Management University, Singapore 259756

~Received 25 May 2003; revised manuscript received 11 August 2003; published 16 March 2004!

We show that the Perron-Frobenius equation of microscopic chaos based on double symmetric maps leads to
an inhomogeneous Smoluchowski equation with a source term. Our perturbative analysis reveals that the
source term gives rise to a directed current for a strongly damped particle in a spatially periodic potential. In
addition, our result proves that in the zeroth-order limit, the position distribution of the particle obeys the
Smoluchowski equation even though the fluctuating force is deterministic.
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I. INTRODUCTION

In accordance with the second law of thermodynam
usable work cannot be extracted from equilibrium fluctu
tions. This is not the case, however, for nonequilibrium flu
tuations, where rectification can turn the unbiased rand
ness into directed motion for useful work. Recently, su
Maxwell’s Demon mechanisms, also known as the ratc
effects, are of great theoretical interest, because their un
standing will contribute to the design of novel artificial m
soscale devices@1#, as well as the explanation of unidirec
tional transport in molecular motors@2–4#.

Current research in these Brownian ratchet systems
led to various proposals@5#, which have been classified ac
cording to whether they are being subjected to a tim
varying potential@3,6#, or whether an external fluctuatin
force has been supplied@7#. The latter type of ratchet sys
tems are also called tilting ratchets, which draw their ene
from fluctuations that are either correlated in time, or a
white but non-Gaussian.

Generically, the potential of tilting ratchets are period
and spatially asymmetric. However, it is interesting that
the more restricted case of a completely symmetric and
riodic potential, work can still be performed out of the no
equilibrium fluctuations@8–11#. Physically, this is possible
due to broken symmetry in the fluctuating force@12#, and
citing Curie’s principle, a current is to be expected. Nev
theless, concrete affirmation of directed motion requires
analytical derivation for the current, which has be
achieved for noise that is deterministic, periodic but tim
asymmetric@9#; or stationary stochastic, such as the wh
shot noise@10#.

As is generally known, there is another source of noneq
librium noise. This is the deterministic noise from chao
dynamical system, which has been considered in the con
of its effects on multistable system@11#, as well as spatially
asymmetric ratchet system@13#. In these cases, the curre
has been attributed to the dynamical asymmetry and de
ministic property of the chaotic noise. But from the persp
tive of statistical symmetry breaking, the basic existence
the current can be physically explained from the nonvan
ing of odd higher order correlations in the chaotic fluctuat
@12,14#. In this respect, directed motion is expected in a s
tially symmetric ratchet due to asymmetric chaotic noi
1063-651X/2004/69~3!/031103~13!/$22.50 69 0311
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although the precise manner in which the microscopic ch
@15# affects the macroscopic particle transport has not b
fully resolved.

In this paper, we attempt to address this problem
greater detail, through establishing an analytical express
for the directed current. This is first carried out by employi
and extending a model@16#, which has been used to stud
the relationship between microscopic chaos and Gaus
diffusion process, by including a generic potentialV(x) as an
additional force field faced by the particle. The resulti
derivation, which will be described in Sec. II, yields a no
linear map which we name the generalized kicked part
~GKP! map. Subsequently, by treating the physical probl
in the strong friction regime, the GKP map is reduced to
quasistationary version, which we call the quasistation
kicked particle~QKP! map. In Sec. III, we begin our analysi
on the evolution of an ensemble of trajectories from the
maps by means of the Perron-Frobenius equation@17,18#,
which relates the density of states of the particle at conse
tive time instances. This is followed by a perturbative ana
sis, with t/g ~wheret is the time interval between chaoti
kicks andg is the viscous coefficient! being the perturbative
parameter. Then, in Sec. IV, with the chaotic fluctuatio
resulting from the class of double symmetric map@17#, we
show that the first-order position density function of the p
ticle satisfies an inhomogeneous Smoluchowski equa
with a source term. Physically, the source term gives rise
directed current in a spatially periodic potential, which
shown in Sec. V. In Sec. VI, the inhomogeneous Smo
chowski equation is solved specifically for the spatially sy
metric cosine potential and fluctuation based on a dou
symmetric map—the Ulam map@19#. Finally, Sec. VII dis-
cusses and compares the results obtained from analy
derivation as well as numerical simulation.

II. THE PHYSICAL MODEL

A. Generalized kicked particle map

We formulate a nonlinear model in which a particle und
the influence of a potentialV(x) is being constantly sub
jected to an impulsive force. Denoted as (gmt)1/2F I(t), the
impulsive fluctuating force is assumed to be determinis
with nonlinear dynamical origin. Here,m denotes the mas
of the particle;t is the time interval between the kicks of th
©2004 The American Physical Society03-1
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impulsive force; and the parameterg is the viscous friction
coefficient of the medium. Accordingly, the Hamiltonian f
this dynamical model with respect to the reduced ph
space (x,p) is as follows:

H5
p2

2m
1V~x!2~gmt!1/2xFI~ t !(

n
d~ t2nt!, ~1!

whered(•••) is the Dirac’s delta function. From Eq.~1!, the
equations of motion are

dx

dt
5

]H

]p
5

p

m
, ~2!

dp

dt
52

]H

]x
52

]V~x!

]x
1~gmt!1/2F I~ t !(

n
d~ t2nt!.

~3!

Considering the dissipative drag from the medium,
particle is also being acted upon by a viscous forceFvis given
by

Fvis52gp. ~4!

As a result, Eq.~3! becomes

dp

dt
52gp2

]V~x!

]x
1~gmt!1/2F I~ t !(

n
d~ t2nt!. ~5!

Thus, if the impulsive force (gmt)1/2F I(t) is defined appro-
priately, Eq.~2! and Eq.~5! will constitute a nonlinear dy-
namical system. Notice that ift→0, Eq. ~5! reduces to the
Langevin’s equation. In addition, ifF I(t) is a Gaussian ran
dom process, this equation describes Brownian motion.

We are interested in a theory based on a series of disc
snapshots of this system. The snapshot is a phase space
immediately after the impulsive kicks. More specifically, t
trajectories from the system@Eqs. ~2! and ~5!# will be re-
corded only at time instantt5nt1, where nt15nt101

~and nt25nt201). This renders the continuous time d
namical system discrete; the snapshot at timet5nt1 is ex-
pressed as (xn ,pn). Similarly, we shall write F I(nt1)
'F I(nt)5Fn

I .
With this definition, we proceed to solve Eqs.~2! and~5!

to obtain~refer to Appendix A for details!

pn115e2gtpn2e2gtE
01

t2

egtV8@xn~ t !#dt1~gmt!1/2Fn11
I ,

~6!

xn115xn1
1

mE
01

t2

pn~ t !dt. ~7!

From Eq. ~6!, we see that (gmt)1/2Fn
I is analogous to the

stochastic fluctuation in Langevin’s formulation. However,
this paper, we are interested in the case whereFn

I is deter-
ministic in that its time evolution is governed by a nonline
dynamical mapG:

Fn115G~Fn!, ~8!
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with Fn serving as the chaotic fluctuation whose intensity
to be adjusted by a factors5A2kT/s, with k being the
Boltzmann constant,T the temperature, ands the standard
deviation of the fluctuation, so that the impulsive term
modeled as

Fn11
I 5sFn11 . ~9!

Moreover, we choose a suitableG that is ergodic, and pos
sess the property

^FiF j&5s2d i j , ~10!

where d i j is the Kronecker delta function, and the^•••&
denotes expectation with respect toh(F), which is the in-
variant density of the dynamics ofG. This model of the
chaotic noise, together with Eqs.~6! and ~7!, shall form a
purely deterministic map called the generalized kicked p
ticle ~GKP! map:

Fn115G~Fn!, ~11!

pn115e2gtpn2e2gtE
01

t2

egtV8@xn~ t !#dt1~gmt!1/2sFn11 ,

~12!

xn115xn1
1

mE
01

t2

pn~ t !dt. ~13!

B. Quasistationary kicked particle map

In the strong friction regime, the relaxation timeg21 is
short, which implies that the ensemble of kicked partic
settles down rapidly to a stationary distribution. According
the spatial positionx of the particle possesses a variation
order (kT/m)1/2g21. If the force fieldV8(x) does not change
appreciably over such a spatial scale,V8@xn(t)# can be
viewed as a constant from 01 to t2 whent.g21, leading
to a simplification of the GKP map@20#. The resulting qua-
sistationary version of the GKP map is termed the quasi
tionary kicked particle~QKP! map, which is given as fol-
lows:

Fn115G~Fn!, ~14!

pn115e2gtpn2
V8~xn!

g
~12e2gt!1~gt!1/2sFn11 ,

~15!

xn115xn1
1

g
~12e2gt!pn2

V8~xn!

g S t1
1

g
~e2gt21! D ,

~16!

where, without loss of generality, we have assumedm51 in
the above as well as in subsequent derivation.

III. THE PERRON-FROBENIUS APPROACH

For the QKP map, let us impose the restrictiongt@1, so
that the iterated solution of the particle’s position become
3-2
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xn115S t

g D 1/2

s(
i 50

n21

Fi 112S t

g D (
i 50

n21

V8~xi !. ~17!

This suggests that the position variable can be expresse
dependently of the momentum variable. By separating
the momentum variable, we arrive at a simplified map re
ing the chaotic fluctuationFn and the position variablexn ,

Fn115G~Fn!, ~18!

xn115xn1S t

g D 1/2

sFn2S t

g DV8~xn!. ~19!

For the sake of notational convenience, we shall also exp
this map succinctly as (F̄,x̄)5 f (F,x), where the overbar
represents the statesF andx at the next instant.

Instead of examining a single trajectory from this map,
us study an ensemble of trajectories, for example, thos
the range (F̄,x̄) to (F̄1dF̄,x̄1dx̄) at time (n11)t in phase
space. These trajectories are found to map deterministic
from the set of ranges (F ( i ),x( i )) to (F ( i )1dF( i ),x( i )

1dx( i )) at timent through the relation (F̄,x̄)5 f (F,x). This
has the implication that the density of trajectories in the
terval (F̄,x̄) to (F̄1dF̄,x̄1dx̄) at time (n11)t is the sum
of the densities in the intervals (F ( i ),x( i )) to (F ( i )

1dF( i ),x( i )1dx( i )) at time nt, which can be expresse
mathematically as

rn11~ F̄,x̄!5 (
(F,x)P f 21(F̄,x̄)

1

udetD f u
rn~F,x!, ~20!

where rn(F,x) is a probability measure that describes t
density of trajectories in (F,x) at nt.

Equation~20! is called the Perron-Frobenius equation.
describes the conservation as well as evolution of the p
ability density rn of a deterministic dynamical system. I
this section, we will show that by performing a perturbati
expansion of the Perron-Frobenius equation, an equatio
the Fokker-Planck type shall arise from the nonlinear dyna
ics given by Eqs.~18! and ~19!. In the following derivation,
we will let t/g to be small ort/g→0, which is a reasonable
assumption in the strong friction regime. Witht/g being a
small parameter, a perturbative expansion up till the or
O„(t/g)3/2

… will be carried out, as this is sufficient for ou
purpose.

First, let us evaluate 1/udetD f u of the Perron-Frobenius
equation by employing Eq.~19!:

1

udetD f u
5

1

uG8~F !u
U12S t

g DV9~x!U21

5
1

uG8~F !u
F11S t

g DV9~ x̄!2S t

g D 3/2

sFV-~ x̄!

1OS S t

g D 2D G . ~21!
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Notice that the potentialV(x) is assumed to be analytic
Moreover, it is expressed as a function ofx at the next in-
stant, so that consecutive time instants ofx are not involved
during the evaluation of the Perron-Frobenius equation la
Reexpressing Eq.~19! in the same vein, we have

x5 x̄2S t

g D 1/2

sF1S t

g DV8~ x̄!2S t

g D 3/2

sFV9~ x̄!1OS S t

g D 2D .

~22!

Putting these results into Eq.~20! and then Taylor expand th
Perron-Frobenius equation in terms oft/g, we obtain a per-
turbative version

rn11~ F̄,x!5 (
FPG21(F̄)

1

uG8~F !u
F11S t

g DV9~x!

2S t

g D 3/2

sFV-~x!GrnS F,x2S t

g D 1/2

sF

1S t

g DV8~x!2S t

g D 3/2

sFV9~x! D
5 (

FPG21(F̄)

1

uG8~F !u H rn~F,x!2S t

g D 1/2

sF
]rn

]x

1S t

g D FV8~x!
]rn

]x
1

1

2
s2F2

]2rn

]x2
1V9~x!rnG

2S t

g D 3/2F2sFV9~x!
]rn

]x
1sFV8~x!

]2rn

]x2

1
1

6
s3F3

]3rn

]x3
1sFV-~x!rnG1OS S t

g D 2D J .

~23!

Following Beck @17#, we introduce a continuous-tim
smooth suspensionr(F,x,t),

r~F,x,t !ªrn~F,x!. ~24!

Note that this suspension is deemed to be true only at s
boscopic timet5nt. Representing the left hand side of th
Perron-Frobenius equation by this suspension, which is
sumed to be analytic, a Taylor expansion yields

rn11~ F̄,x!5r~ F̄,x,nt1t!

5r~ F̄,x,t !1t
]

]t
r~ F̄,x,t !

1
1

2
t2

]2

]t2
r~ F̄,x,t !1•••. ~25!

Let us consider the following perturbative ansatz:
3-3
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r~F,x,t !5r (0)~F,x,t !1S t

g D 1/2

q(1)~F,x,t !

1S t

g Dq(2)~F,x,t !1S t

g D 3/2

q(3)~F,x,t !

1OS S t

g D 2D . ~26!

Substituting this ansatz into Eq.~25!, we get

rn11~ F̄,x!5r (0)~ F̄,x,t !1t1/2g21/2q(1)~ F̄,x,t !

1tFg21q(2)~ F̄,x,t !1
]

]t
r (0)~ F̄,x,t !G

1t3/2Fg23/2q(3)~ F̄,x,t !1g21/2
]

]t
q(1)~ F̄,x,t !G

1O~t2!. ~27!

Also, in terms of Eq.~26!, the perturbative Perron-Frobeniu
equation~23! becomes

rn11~ F̄,x!5 (
FPG21(F̄)

1

uG8~F !u H r (0)1S t

g D 1/2Fq(1)

2sF
]r (0)

]x G1S t

g D Fq(2)2sF
]q(1)

]x

1V8~x!
]r (0)

]x
1

1

2
s2F2

]2r (0)

]x2
1V9~x!r (0)G

1S t

g D 3/2Fq(3)2sF
]q(2)

]x
1V8~x!

]q(1)

]x

1
1

2
s2F2

]2q(1)

]x2
1V9~x!q(1)22sFV9~x!

]r (0)

]x

2sFV8~x!
]2r (0)

]x2
2

1

6
s3F3

]3r (0)

]x3

2sFV-~x!r (0)G1OS S t

g D 2D J . ~28!

Equations~27! and~28! constitute perturbative expansions
the Perron-Frobenius equation. Comparing order by orde
these expansions, the following relations ensue. ForO(t0):

r (0)5 (
FPG21(F̄)

1

uG8~F !u
r (0), ~29!

O(t1/2):

q(1)5 (
FPG21(F̄)

1

uG8~F !u
Fq(1)2sF

]r (0)

]x G , ~30!
03110
in

O(t):

g21q(2)5 (
FPG21(F̄)

1

uG8~F !u
Fg21q(2)2g21sF

]q(1)

]x

1g21V8~x!
]r (0)

]x
1

1

2
g21s2F2

]2r (0)

]x2

1g21V9~x!r (0)2
]r (0)

]t G , ~31!

O(t3/2):

g23/2q(3)5 (
FPG21(F̄)

1

uG8~F !u
Fg23/2q(3)2g23/2sF

]q(2)

]x

1g23/2V8~x!
]q(1)

]x
1

1

2
g23/2s2F2

]2q(1)

]x2

1g23/2V9~x!q(1)22g23/2sFV9~x!
]r (0)

]x

2g23/2sFV8~x!
]2r (0)

]x2
2

1

6
g23/2s3F3

]3r (0)

]x3

2g23/2sFV-~x!r (0)2g21/2
]q(1)

]t

1g21/2sF
]2r (0)

]x]t G , ~32!

where the overbar inr (0) and q( i ) serves to indicate its de
pendence onF̄ instead ofF. As we will show, these equa
tions are important in the subsequent analysis as the lo
order solution to the perturbative equation shall determ
the next higher order solution, and leads to simplification
the form of Fokker-Planck equations, which are essential
the derivation of the directed current.

As the position spacex is of special interest in the analy
sis on the macroscopic transport of the kicked particle, i
appropriate to integrate out the fluctuationF through mar-
ginal functions that depends on (x,t) in the following way:

P0~x,t !ªE dFr (0)~F,x,t ! ~33!

and

Qi~x,t !ªE dFq( i )~F,x,t !, ~34!

wherei 51,2,3.
Next, let us further assume thatG is a complete map@17#

with phase space@21,1#. This assumption shall simplify the
set of equations given by Eqs.~29!–~32!. To begin with,
notice that these equations are of the following form:
3-4
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a~ F̄,x,t !5 (
FPG21(F̄)

1

uG8~F !u
b~F,x,t !, ~35!

with a denoting the functions on the left hand side of Eq
~29!–~32! andb the functions on the right hand side.

A very useful property of complete maps is that they s
isfy the integration lemma, which states that the margi
function of a and that ofb are equal if Eq.~35! is satisfied.
Mathematically, this is expressed as

E
21

1

dFa~F,x,t !5E
21

1

dFb~F,x,t !. ~36!

The proof of this theorem relates to an elementary prop
of the Perron-Frobenius operator@17#.

Applying the integration lemma to Eq.~29! leads to
P0(x,t)5P0(x,t), which is trivial. However, when applied
to Eq. ~30!, the result̂ F&50 is obtained. Thus, the ansa
given by Eq.~26! applies only to maps with vanishing mea
@17#. In other words, the chaotic force should have zero b

We next apply the integration lemma to Eq.~31! and ob-
tain

g21Q2~x,t !5g21Q2~x,t !2g21s
]

]xE21

1

dFFq(1)

1g21V8~x!
]

]xE21

1

dFr (0)

1g21
s2

2

]2

]x2E21

1

dFF2r (0)

1g21V9~x!E
21

1

dFr (0)2
]

]tE21

1

dFr (0).

~37!

Based on the fact that Eq.~29! can be solved by any functio
of the form ~see Appendix B!

r (0)~F,x,t !5h~F !P0~x,t !, ~38!

Eq. ~37! reduces to

s2^F2&
2g

]2

]x2
P0~x,t !1

]

]x S V8~x!

g
P0~x,t ! D2

]

]t
P0~x,t !

5
s

g

]

]xE21

1

dFFq(1), ~39!

which is a kind of inhomogeneous Fokker-Planck equat
for the zeroth-order probability distributionP0(x,t) due to
fluctuations from complete maps. In fact, Eq.~39! is a
Smoluchowski equation with a source term (s/g)
3(]/]x)*21

1 dFFq(1).
Finally, we would like to remark that Eq.~38! has the

appearance thatF andx are statistically independent. This
rather surprising sincex depends deterministically onF, and
hence,h(F) is perceivably the only independent distributio
03110
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The point to note is that this seeming independence betw
F and x occurs forr (0), which is the zeroth-order approxi
mation to the true solutionr. In general, this independenc
does not occur in the true solutionr, as is apparent from the
fact that the higher-order perturbative solutionsr (k)5r (0)

1( i 51
k (t/g) i /2q( i ) will not factorize with h(F). For ex-

ample, theq( i )’s of Eqs.~30!–~32! are not separable into th
form of h(F)Qi(x). However, in the next section, when th
map is restricted to be double symmetric, we show that p
turbative solution up to first-order, i.e.,r (1), can be factor-
ized with h(F) owing to the symmetric properties of th
double symmetric map.

IV. CHAOTIC FLUCTUATIONS FROM DOUBLE
SYMMETRIC MAPS

In a subsequent analysis, we shall focus on a subclas
the complete maps, known as the double symmetric m
which possess the following properties:

G~F !5G~2F !, ~40!

h~F !5h~2F !. ~41!

Examples of double symmetric maps are the even or
Tchebyscheff maps as well as maps that are their conjug
@21#. DenotingG( i ) as thei th-order Tchebyscheff map, th
functional form of this map can be derived from the follow
ing iterative equation:

G( i 11)~F !52FG( i )~F !2G( i 21)~F !. ~42!

With G(0)(F)51 and G(1)(F)5F, it is simple to deduce
that the second and fourth-order Tchebyscheff maps
G(2)(F)52F221 and G(4)(F)58F428F211, respec-
tively. Note that the Ulam map is the negative of the seco
order Tchebyscheff map.

An important consequence of the properties of the dou
symmetric map is the following result:

(
FPG21(F̄)

1

uG8~F !u
Fih~F !50, ~43!

with i being an odd integer, as it will lead to many simplifi
cations. This relation holds because ifF is a preimage, so is
2F.

If we were to apply Eq.~43! with Eq. ~38! to Eq.~30!, we
notice that the second term of Eq.~30! no longer contributes,
and the equation simplifies to

q(1)5 (
FPG21(F̄)

1

uG8~F !u
q(1). ~44!

In this case,q(1) can be expressed in the separable form~see
Appendix B!

q(1)~F,x,t !5h~F !Q1~x,t !. ~45!
3-5
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Inserting Eq.~45! into Eq. ~39! and noting that̂ F&50, the
differential equation for the zeroth-order probability distrib
tion reduces to, interestingly, the Smoluchowski equation

s2^F2&
2g

]2

]x2
P0~x,t !1

]

]x S V8~x!

g
P0~x,t ! D2

]

]t
P0~x,t !50.

~46!

Furthermore, for double symmetric maps, we can a
employ Eq.~38!, ~43!, and~45! to simplify Eq. ~32!, leading
to

g21q(3)5 (
FPG21(F̄)

1

uG8~F !u
Fg21q(3)2g21sF

]q(2)

]x

1g21V8~x!h~F !
]Q1

]x
1

1

2
g21s2F2h~F !

]2Q1

]x2

1g21V9~x!h~F !Q12h~F !
]Q1

]t G . ~47!

By applying the integration lemma to Eq.~47!, we obtain

s2^F2&
2g

]2

]x2
Q1~x,t !1

]

]x S V8~x!

g
Q1~x,t ! D2

]

]t
Q1~x,t !

5
s

g

]

]xE21

1

dFFq(2). ~48!

With our interest in chaotic fluctuations based on dou
symmetric map in the limitt/g→0, it is sufficient for us to
consider position probability distribution up till the first o
der in t/g, i.e.,

P1~x,t !5P0~x,t !1S t

g D 1/2

Q1~x,t !, ~49!

which comes from@see Eq.~26!#

r (1)~F,x,t !5r (0)~F,x,t !1S t

g D 1/2

q(1)~F,x,t !

5h~F !P1~x,t !, ~50!

resulting from Eqs.~38! and ~45!. Then, by multiplying Eq.
~48! with (t/g)1/2 and adding to Eq.~46!, noting as well that
s2^F2&52kT, we arrive at the inhomogeneous different
equation for the first-order position probability distributio
of the particle
03110
o

e

l

kT

g

]2

]x2
P1~x,t !1

]

]x S V8~x!

g
P1~x,t ! D2

]

]t
P1~x,t !

5t1/2g23/2
]

]xE21

1

dFsFq(2). ~51!

Remarkably, we again arrive at a Smoluchowski equat
with a source term. More significantly, this source term
physically responsible for the flow of current in a spatia
periodic potential, which will be shown in the next section.
is also important to note from Eq.~51! that in the limitt/g
→0, the position probability density function obeys th
Smoluchowski equation, withP1(x)→Z21exp@2V(x)/kT#,
whereZ is the normalization constant.

V. DIRECTED CURRENT FROM PERIODIC POTENTIAL

In this section, we are concerned with the derivation o
general analytical expression for the directed current, w
the potential is periodic, and the nonequilibrium chaotic flu
tuation is generated by double symmetric maps. To obta
mathematical description of the directed current, which
curs in the steady state, we shall first set]P1 /]t50 and
integrate Eq.~51! to get

kT

g

]P1

]x
1

V8~x!

g
P15t1/2g23/2E

21

1

dFsFq(2)2N1 ,

~52!

whereN1 is a constant of integration. This first-order diffe
ential equation can be solved, and the solution is given b

P1~x!5e2V(x)/kTH S t

g D 1/2 1

kTE21

x

eV(x8)/kT

3E
21

1

dFsFq(2)~F,x8!dx8

2
gN1

kT E
21

x

eV(x8)/kTdx81N2J , ~53!

in which the arbitrary constants of integrationN1 andN2 are
to be determined from the periodic boundary condition a
the normalization condition, respectively.

Next, let us assume that the potential field has a period
2, or

V~x12n!5V~x!. ~54!

Hence,x can be treated as an angle variable with the con
quence that the densityr must be periodic@22#, i.e.,

r~F,x12n!5r~F,x!. ~55!

This implies, from Eq.~26!, that
3-6



on

l-

ANALYSIS OF THE ORIGIN OF DIRECTED CURRENT . . . PHYSICAL REVIEW E 69, 031103 ~2004!
r (0)~F,x12n!5r (0)~F,x! ~56!

and

q( i )~F,x12n!5q( i )~F,x!. ~57!

Note that the variablet has been suppressed as we are c
cerned with the steady state.

Then, applying Eq.~56! and Eq. ~57! to Eq. ~50!, we
obtain the periodic condition forP1(x):

P1~x12n!5P1~x!. ~58!

Through Eq.~53!, P1(x12n) can be expressed in the fo
lowing form ~see Appendix C!:

P1~x12n!5e2V(x)/kT
n

kT H S t

g D 1/2E
21

1

eV(x8)/kT

3E
21

1

dFsFq(2)~F,x8!dx8

2gN1E
21

1

eV(x8)/kTdx8J 1P1~x!. ~59!
.,

t

to

03110
-

As the first term on the right of Eq.~59! must be zero due to
the periodicity ofP1(x), i.e.,

S t

g D 1/2E
21

1

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

2gN1E
21

1

eV(x8)/kTdx850, ~60!

we have

N15S t

g D 1/21

g

E
21

1

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

E
21

1

eV(x8)/kTdx8

.

~61!

Thus,
P1~x!5e2V(x)/kTH S t

g D 1/2 1

kTE21

x

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

2S t

g D 1/2 1

kT

F E
21

1

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8GF E
21

x

eV(x8)/kTdx8G
E

21

1

eV(x8)/kTdx8

1N2J , ~62!
to
with N2 obtained by normalizing this expression, i.e
*21

1 P1(x)dx51.
Let us next proceed to determine the directed currenJ

from Eq. ~19!. Defining the current as

Jª lim
n→`

^^xn112xn&&, ~63!

where ^^•••&& means taking expectation with respect
r̃(x,F) in the steady state and

r̃~F,x!5r (0)~F,x!1S t

g D 1/2

q(1)~F,x!1OS t

g D , ~64!

we have
J5 lim
n→`

K K S t

g D 1/2

sFn2S t

g DV8~xn!L L
5S t

g D 1/2E
21

1 E
21

1 FsF2S t

g D 1/2

V8~x!G
3Fr (0)~F,x!1S t

g D 1/2

q(1)~F,x!1OS t

g D GdxdF

5S t

g D 1/2E
21

1 E
21

1 FsF2S t

g D 1/2

V8~x!G
3FP0~x!h~F !1S t

g D 1/2

Q1~x!h~F !1OS t

g D GdxdF.

~65!

Noting that the last equation can be further simplified due
^F&50, and taking the leading order terms int/g, we are
3-7
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led to the following general expression for the directed c
rent:

J52S t

g D E
21

1

V8~x!P1~x!dx, ~66!

which clearly shows that the current is connected to an
semble average of the force field@5#. Substituting Eq.~62! in
Eq. ~66!, we finally arrive at the central result of this pape

J52S t

g D 3/2 1

kTE21

1

V8~x!e2V(x)/kT

3H E
21

x

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

2F E
21

1

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8G

3

E
21

x

eV(x8)/kTdx8

E
21

1

eV(x8)/kTdx8
J dx. ~67!

The normalization constantsN2 in P1(x) does not contribute
to the current because

2S t

g D E
21

1

V8~x!N2e2V(x)/kTdx

5S tkTN2

g D @e2V(x)/kT#21
1 50. ~68!

Equation ~67! gives the first-order analytical expressio
for the directed current when the fluctuations come from
class of chaotic double symmetric maps. It clearly shows
the directed current is attributed to the source te
*21

1 dFsFq(2) of the inhomogeneous Smoluchowski equ
tion ~51!, and also indicates that the current scale as (t/g)3/2.
However, we would like to emphasize that it is possible
the source term to vanish. In that case, the currentJ shall
depend on a scaling relation in terms oft/g with an expo-
nent that is greater than 3/2. The exact details of this dep
dency require the evaluation of higher-order perturbat
equations, which turn out to be rather complicated.

VI. TILTING RATCHET WITH SYMMETRIC COSINE
POTENTIAL AND ASYMMETRIC FLUCTUATIONS

GENERATED BY THE ULAM MAP

The results obtained in the previous section are applica
to the general class of double symmetric maps. In orde
better understand the effect of such nonequilibrium cha
fluctuations on directed motion, it is necessary to solve
source term*21

1 dFsFq(2) for a typical case. In this section
we present such a solution for a special double symme
map: the Ulam map.

To begin, let us reduce Eq.~31! to the following form by
03110
-
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e
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employing Eq.~38!, Eq. ~43! and Eq.~45!:

g21q(2)5 (
FPG21(F̄)

1

uG8~F !u H g21q(2)

1g21h~F !
]

]x
@V8~x!P0#1

1

2
g21s2F2h~F !

]2P0

]x2

2h~F !
]P0

]t J . ~69!

We multiply Eq. ~46! with h(F), and apply
(FPG21(F̄)@1/uG8(F)u# to both sides, yielding

(
FPG21(F̄)

1

uG8~F !u H g21h~F !
]

]x
@V8~x!P0#

1
1

2
g21s2^F2&h~F !

]2P0

]x2
2h~F !

]P0

]t J 50.

~70!

Subtracting Eq.~69! by Eq. ~70!, a more concise relation
betweenq(2) andq(2) is attained as follows:

q(2)5 (
FPG21(F̄)

1

uG8~F !u H q(2)1
1

2
h~F !s2@F2

2^F2&#
]2P0

]x2 J . ~71!

We then proceed by making the following ansatz forq(2):

q(2)5h~F !Q2~x,t !1sFh~F !R2~x,t !. ~72!

Applying this ansatz to Eq.~71! and after some simplifica
tion, we arrive at

sF̄h~ F̄ !R252 (
FPG21(F̄)

1

uG8~F !u

3H s2

2
h~F !s2F12

F2

s2G]2P0

]x2 J , ~73!

which can be further reduced for fluctuations based on
Ulam map~with s251/2) to

sG~F !h~ F̄ !R2

52
1

4
s2G~F !

]2P0

]x2 (
FPG21(F̄)

1

uG8~F !u
h~F !.

~74!

Canceling terms in Eq.~74! while noting thats52AkT in
the case of Ulam map, we get

R252
1

2
~kT!1/2

]2P0

]x2
. ~75!
3-8
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Knowing that

P0~x!5Z21e2V(x)/kT ~76!

is the solution of Eq.~46! in the steady state, with

Z5E
21

1

e2V(x)/kTdx ~77!

being the normalization constant, we deduce that

]2P0

]x2
52

1

ZkT
e2V(x)/kTFV9~x!2

V8~x!2

kT G . ~78!

Substituting this result into Eq.~75!, we have

R2~x!5
1

2Z~kT!1/2
e2V(x)/kTFV9~x!2

V8~x!2

kT G . ~79!

With these results, we are able to evaluate the source
*21

1 dFsFq(2)(F,x) as follows:
a

03110
rm

E
21

1

dFsFq(2)~F,x!

5E
21

1

dFsFh~F !Q2~x!1E
21

1

dFs2F2h~F !R2~x!

5s^F&Q2~x!1s2^F2&R2~x!

5
~kT!1/2

Z
e2V(x)/kTFV9~x!2

V8~x!2

kT G . ~80!

Moreover, this implies that

E
21

x

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

5
~kT!1/2

Z E
21

x FV9~x8!2
V8~x8!2

kT Gdx8 ~81!

and

E
21

1

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

5
~kT!1/2

Z E
21

1 FV9~x8!2
V8~x8!2

kT Gdx8. ~82!

Substituting Eqs.~81! and ~82! into Eq. ~62!, the first-order
position probability distribution is found to have the follow
ing form:
P1~x!5e2V(x)/kTHS t

gkTD 1/21

ZE21

x FV9~x8!2
V8~x8!2

kT Gdx82S t

gkTD 1/21

Z

E
21

1 FV9~x8!2
V8~x8!2

kT Gdx8E
21

x

eV(x9)/kTdx9

E
21

1

eV(x)/kTdx

1N2J .

~83!
the
as
re-
the

r
d:
As a result, according to Eq.~66!, the directed current of the
particle activated by chaotic fluctuations from the Ulam m
is given by

J52S t

g D 3/21

ZE21

1

V8~x!e2V(x)/kTH E
21

x FV9~x8!

~kT!1/2

2
V8~x8!2

~kT!3/2 Gdx82E
21

1 FV9~x8!

~kT!1/2

2
V8~x8!2

~kT!3/2 Gdx8

E
21

x

eV(x8)/kTdx8

E
21

1

eV(x8)/kTdx8
J dx. ~84!
p
In order to appreciate the symmetry breaking effect of

nonequilibrium chaotic fluctuation, the periodic potential h
to be spatially symmetric and time independent, with a
sulting spatial force field that averages out to zero. For
sake of simplicity, let us select

V~x!5
m

2
~12cospx!. ~85!

Evaluating each terms of Eq.~83! in accordance with Eq.
~85!, the following more explicit analytical expression fo
the first-order position probability distribution is determine
3-9
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P1~x!5
em cospx/2kT

E
21

1

em cospx/2kTdx
H S t

gkTD 1/2F mp

2
sinpx

2
m2p2

8kT
x1

m2p

16kT
sin 2px2

m2p2

8kT

1
m2p2

4kT

E
21

x

e2m cospx8/2kTdx8

E
21

1

e2m cospx8/2kTdx8
G1N28J .

~86!

Keeping in mind that constant terms such asm2p2/8kT and
N28 will not contribute to the current, the first-order analy
cal expression for the directed current is given by

J52S t

g D 3/2 m2p2

4~kT!1/2E
21

1

em cospx/2kTdx

3E
21

1

em cospx/2kT sinpx

3H sinpx2
mp

4kT
x1

m

8kT
sin 2px

1
mp

2kT

E
21

x

e2m cospx8/2kTdx8

E
21

1

e2m cospx8/2kTdx8
J dx. ~87!

VII. DISCUSSION

A comparison of our theoretical result, as given in E
~87!, with numerical simulation based on the QKP map,
illustrated in Figs. 1 and 2. The figures show a close ma
between the analytical and simulation results, thus verify
our theoretical approach. Indeed, a closer scrutiny on th
figures reveals that the correspondence becomes bett
t/g→0, which is to be expected. As discussed previou
when t/g→0, P1(x)→Z21exp(2V(x)/kT), which implies
that the current vanishes in the scaling limit. Hence, our a
lytical and numerical results indicate a convergence to
symmetric zero current state via scaling behavior of the le
ing order correction with respect tot/g in the following
way:

J;S t

g D 3/2

. ~88!
03110
.
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,
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e

d-

Although this scaling law applies to fluctuations from Ula
map @see Eq.~87! and Fig. 3#, it is conceivable that a sub
class of double symmetric map may generate the same
ing behavior, leading to one universality class of nonequil
rium chaotic fluctuations. In fact, for chaotic fluctuatio
based on the fourth-order Tchebyscheff map@21#, a scaling
with (t/g)5/2 was observed through numerical simulatio
~see Fig. 3!, indicating a possible origination of another un
versality class. This suggests that in the vicinity of the ze
current fixed point, there may exist different routes to u
versality due to chaotic noise from double symmetric ma
The eventual elucidation of these universality classes is
interesting subject for further research.

In another context, it is also interesting to investigate
manner in whichJ depends on the noise intensitykT of the
chaotic fluctuations, the outcome of which is shown in F
4. Again, the agreement between analytical and numer
simulation is observed. The figure shows that the current
convex function ofkT, implying the existence of an opti
mum level for the chaotic drive. This result is physical
intuitive, with the current vanishes as the noise strength
duces, and tailing off more slowly at increasing noise inte
sity, analogous to results obtained from noise that is de
ministic and temporally asymmetric@9#. In both of these
cases, directed current has been accounted for by the p
ence of odd higher-order correlations. But in this paper,
have gone one step further in examining the quantitative
tails of how macroscopic order, in the form of unidirection
particle flow, can be created out of microscopic chaotic flu
tuation.

From a general perspective, the theoretical result give
Eq. ~84! is not restricted to potentials that are spatially sy
metric. By applying the same formalism to a well-know
asymmetric and periodic ratchet potential@5#

V~x!5
m

2d H sin@p~x2x0!#1
1

4
sin@2p~x2x0!#1dJ ,

~89!

where x050.3807 andd51.1009, the analytical result i
again validated~see Fig. 4!. More importantly, the asymme
try in the potential was found to enhance the directed curr
in this case.

In summary, this work provides exact analytical expre
sions up to leading order int/g obtained from a perturbative
Perron-Frobenius approach. We hope that these theore
results will be useful for further research into noise-assis
energy transduction processes in the realm of science
engineering, where nonequilibrium chaotic fluctuations m
be ubiquitous.
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APPENDIX A

In this appendix, we shall derive the discrete-time d
namical equations ofpn and xn from Eqs.~2! and ~5!. For
nt1<t,(n11)t, Eq. ~5! does not contain the impulsiv
force. In this case, the Hamilton’s equations become

FIG. 1. The current versust for the symmetric cosine potentia
based on analytical expression~87! ~solid curve with asterisks! and
numerical simulation~dotted curve with open circles! for chaotic
fluctuations from the Ulam map. The parameters in dimension
units arem51.0, g5200.0, m51.0, kT50.2. The ensemble siz
used in the numerical simulation is 53104, with an iteration length
of 53105.

FIG. 2. The current versusg for the symmetric cosine potentia
based on analytical expression Eq.~87! ~solid curve with asterisks!
and numerical simulation~dotted curve with open circles! for cha-
otic fluctuations from the Ulam map. The parameters in dimens
less units arem51.0, t51.0, m51.0, kT50.2. The ensemble siz
used in the numerical simulation is 53104, with an iteration length
of 53105.
03110
-

dx

dt
5

p

m
, ~A1!

dp

dt
52gp2V8~x!, ~A2!

ss

-

FIG. 3. The linear regression between lnJ and lnt/g from nu-
merical simulation for the symmetric cosine potential when the c
otic fluctuation is based on the Ulam map~open circles! and the
fourth-order Tchebyscheff map~open triangles markers!. The gra-
dient of the straight line is found to be 1.490 and 2.503, resp
tively. The parameters in dimensionless units arem51.0, m51.0,
kT50.2. The ensemble size used in the numerical simulation
3104, with an iteration length of 53105.

FIG. 4. The current versuskT for the symmetric cosine~solid
curve! and asymmetric ratchet~dotted curve! potential based on
analytical expression Eq.~84! ~crosses! and numerical simulation
~open circles! for chaotic fluctuations from the Ulam map. The p
rameters in dimensionless units arem51.0, t51.0, g5200.0, m
51.0. The ensemble size used in the numerical simulation i
3104, with an iteration length of 53105.
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where V8(x)5]V(x)/]x. The physical conditions att
5nt1 are given by

xn5x~nt1!5x~nt2! ~A3!

and

pn5p~nt1!5p~nt2!1~gmt!1/2F I~nt!5p~nt2!

1~gmt!1/2Fn
I . ~A4!

Equation~A3! states the continuity condition for the positio
of the particle, while Eq.~A4! relates the discontinuou
change in momentum due to thed kick.

We first integrate Eq.~A2! over the time intervalnt1

<t,(n11)t:

E
nt1

(n11)t2

d~egtp!52E
nt1

(n11)t2

egt8V8~x!dt8. ~A5!

The left hand side of the equation is equal to

eg(n11)t2
p@~n11!t2#2egnt1

p~nt1!. ~A6!

After a rearrangement of the terms, the equation becom

e2g01
p@~n11!t2#

5e2gt2
pn2e2g(n11)tE

nt1

(n11)t2

egt8V8~x!dt8

5e2gt2
pn2E

nt1

(n11)t2

eg[ t82(n11)t]V8~x!dt8

5e2gt2
pn2e2gtE

01

t2

egt9V8@xn~ t9!#dt9.

In the last equation, we have performed a change of varia
t82(n11)t5t92t. Substituting the expression on the le
hand side with Eq.~A4!, we obtain

e2g01
pn115e2gt2

pn2e2gtE
01

t2

egtV8@xn~ t !#dt

1e2g01
~gmt!1/2Fn11

I . ~A7!

Since e6g01
516g011•••, and taking into account tha

01 is an infinitesimally small number, we have

pn115e2gtpn2e2gtE
01

t2

egtV8@xn~ t !#dt1~gmt!1/2Fn11
I .

~A8!

Similarly, we integrate Eq.~A1! over the same time inter
val nt1<t,(n11)t and perform the change of variab
t82(n11)t5t92t. The result is

x@~n11!t2#5xn1
1

mE
01

t2

pn~ t9!dt9. ~A9!
03110
le,

In this equation, we have used the notationpn(t9)
5p(t91nt). With the continuity condition given by Eq
~A3!, we obtain

xn115xn1
1

mE
01

t2

pn~ t !dt. ~A10!

APPENDIX B

In this appendix, we shall show that the solution of equ
tion

a~ F̄,x,t !5 (
FPG21(F̄)

1

uG8~F !u
a~F,x,t !, ~B1!

with F derived from chaotic maps which are ergodic, tak
the separable form@17#

a~F,x,t !5h~F !A~x,t !, ~B2!

where

A~x,t !5E dFa~F,x,t !. ~B3!

To begin, it is essential to note that Eq.~B1! relates be-
tween two identical functions with respect to the variablesF̄
andF, while the values ofx andt are the same at both side
of the equation. As the chaotic maps in consideration
ergodic, an invariant densityh(F) exists and isunique@18#.
It also satisfies

h~ F̄ !5 (
FPG21(F̄)

1

uG8~F !u
h~F !. ~B4!

This implies that for Eq.~B1! to be true for allx and t,
a(F,x,t) must have the separable form given by Eq.~B2!.
Otherwise, different values ofx and t will lead to different
functional forms ofh(F), which contradict the uniqueness o
the invariant density.

APPENDIX C

In this appendix, we shall derive Eq.~59!. This requires us
to evaluate a few quantities. For the first quantity, we ha

E
2112(h21)

112(h21)

eV(x8)/kTdx85E
21

1

eV(x)/kTdx, ~C1!

as a result of Eq.~54! and a change of variable of the form
x5x822(h21), whereh is an integer. This result is usefu
for the following calculation:
3-12
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E
21

x12n

eV(x8)/kTdx85 (
h51

n E
2112(h21)

112(h21)

eV(x8)/kTdx8

1E
2112n

x12n

eV(x8)/kTdx8

5nE
21

1

eV(x9)/kTdx91E
21

x

eV(x9)/kTdx9,

~C2!

where a change of variablex95x822n has been performed
on the last integral. In addition, Eq.~57! ~with i 52) implies
that

E
2112(h21)

112(h21)

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

5E
21

1

eV(x)/kTE
21

1

dFsFq(2)~F,x!dx, ~C3!
.

ys
.

v
.
.
.
.

d

03110
whenx5x822(h21). Using Eq.~C3! and applying similar
techniques to the determination of Eq.~C2! to the following
integral, we obtain

E
21

x12n

eV(x8)/kTE
21

1

dFsFq(2)~F,x8!dx8

5nE
21

1

eV(x9)/kTE
21

1

dFsFq(2)~F,x9!dx9

1E
21

x

eV(x9)/kTE
21

1

dFsFq(2)~F,x9!dx9. ~C4!

Employing the two evaluated quantities~C2! and~C4! on
P1(x12n) from Eq. ~53!, Eq. ~59! is obtained.
hys.

.
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