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Analysis on the origin of directed current from a class of microscopic chaotic fluctuations
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We show that the Perron-Frobenius equation of microscopic chaos based on double symmetric maps leads to
an inhomogeneous Smoluchowski equation with a source term. Our perturbative analysis reveals that the
source term gives rise to a directed current for a strongly damped patrticle in a spatially periodic potential. In
addition, our result proves that in the zeroth-order limit, the position distribution of the particle obeys the
Smoluchowski equation even though the fluctuating force is deterministic.
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[. INTRODUCTION although the precise manner in which the microscopic chaos
[15] affects the macroscopic particle transport has not been
In accordance with the second law of thermodynamicsfully resolved.
usable work cannot be extracted from equilibrium fluctua- In this paper, we attempt to address this problem in
tions. This is not the case, however, for nonequilibrium fluc-greater detail, through establishing an analytical expression
tuations, where rectification can turn the unbiased randomfor the directed current. This is first carried out by employing
ness into directed motion for useful work. Recently, suchand extending a mod¢lL6], which has been used to study
Maxwell's Demon mechanisms, also known as the ratchethe relationship between microscopic chaos and Gaussian
effects, are of great theoretical interest, because their undefliffusion process, by including a generic potentigk) as an
standing will contribute to the design of novel artificial me- additional force field faced by the particle. The resulting
soscale deviceﬁ]’ as well as the exp|anati0n of unidirec- derivation, which will be described in Sec. Il, ylelds a non-
tional transport in molecular motof&—4]. linear map which we name the generalized kicked particle
Current research in these Brownian ratchet systems hd§KP) map. Subsequently, by treating the physical problem
led to various proposal], which have been classified ac- in the strong friction regime, the GKP map is reduced to a
cording to whether they are being subjected to a timeduasistationary version, which we call the quasistationary
varying potential[3,6], or whether an external fluctuating Kicked particle(QKP) map. In Sec. lll, we begin our analysis
force has been supplidd@]. The latter type of ratchet sys- 0N the evolution of an ensemble of trajectories from these
tems are also called tilting ratchets, which draw their energynaps by means of the Perron-Frobenius equatioh1§,
from fluctuations that are either correlated in time, or arewhich relates the density of states of the particle at consecu-
white but non-Gaussian. tive time instances. This is followed by a perturbative analy-
Generically, the potential of tilting ratchets are periodic Sis, With 7/y (where 7 is the time interval between chaotic
and spatially asymmetric. However, it is interesting that inkicks andy is the viscous coefficienbeing the perturbative
the more restricted case of a Comp|ete|y symmetric and peparameter. Then, in Sec. IV, with the chaotic fluctuations
riodic potential, work can still be performed out of the non- resulting from the class of double symmetric nfag], we
equilibrium fluctuationd8—11]. Physically, this is possible show that the first-order position density function of the par-
due to broken symmetry in the fluctuating forge2], and  ticle satisfies an inhomogeneous Smoluchowski equation
citing Curie’s principle, a current is to be expected. Never-With a source term. Physically, the source term gives rise to a
theless, concrete affirmation of directed motion requires aflirected current in a spatially periodic potential, which is
analytical derivation for the current, which has beenshown in Sec. V. In Sec. VI, the inhomogeneous Smolu-
achieved for noise that is deterministic, periodic but timechowski equation is solved specifically for the spatially sym-
asymmetric[9]; or stationary stochastic, such as the whitemetric cosine potential and fluctuation based on a double
shot noisg10]. symmetric map—the Ulam mgd9]. Finally, Sec. VII dis-
As is generally known, there is another source of nonequicusses and compares the results obtained from analytical
librium noise. This is the deterministic noise from chaotic derivation as well as numerical simulation.
dynamical system, which has been considered in the context
of its effects on multistable systefi1], as well as spatially Il. THE PHYSICAL MODEL
asymmetric ratchet systefd3]. In these cases, the current
has been attributed to the dynamical asymmetry and deter-
ministic property of the chaotic noise. But from the perspec- We formulate a nonlinear model in which a particle under
tive of statistical symmetry breaking, the basic existence ofhe influence of a potentia¥/(x) is being constantly sub-
the current can be physically explained from the nonvanishjected to an impulsive force. Denoted agnfr)Y?F'(t), the
ing of odd higher order correlations in the chaotic fluctuationimpulsive fluctuating force is assumed to be deterministic
[12,14). In this respect, directed motion is expected in a spawith nonlinear dynamical origin. Heren denotes the mass
tially symmetric ratchet due to asymmetric chaotic noiseof the particle;r is the time interval between the kicks of the

A. Generalized kicked particle map
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impulsive force; and the parameteris the viscous friction with F,, serving as the chaotic fluctuation whose intensity is
coefficient of the medium. Accordingly, the Hamiltonian for to be adjusted by a facts=+2kT/o, with k being the
this dynamical model with respect to the reduced phas@oltzmann constanf] the temperature, ana the standard

space X,p) is as follows: deviation of the fluctuation, so that the impulsive term is
0? modeled as
=—+4 _ 1/2,, | o
H= 2 —+V(x)= (ymr) xF(U%)&G n7), (1) F L =SFo.y. ©
whered(- - -) is the Dirac’s delta function. From E¢l), the =~ Moreover, we choose a suitab@that is ergodic, and pos-
equations of motion are sess the property
dx JoH p <FiFj>=025ij ) (10)
at = ap m @ | |
where §;; is the Kronecker delta function, and tie- -)
dp 9H V(%) denotes expectation with respecth¢F), which is the in-
T s ax +(ymnY¥E(1) D) s(t—n1). variant density of the dynamics dB. This model of the
n

chaotic noise, together with Eq&) and (7), shall form a
3) purely deterministic map called the generalized kicked par-

Considering the dissipative drag from the medium, theficle (GKP) map:
particle is also being acted upon by a viscous fdfgegiven

by Fn+l=G(Fn)u (11)
FViS: —YP. (4) Ppi1i= e~ 'yTpn_ e 77f07+ eytv,[Xn(t)]dt‘f‘ ( ’ymT)l/ZS Fn+1,
As a result, Eq(3) becomes (12
dp aV(X) 1(+
G- P Tk +(7m7)1’2F'(t)§n: s(t=n7). (5) Xns1=Xn+ ﬁfm pa(t)dt. (13
Thus, if the impulsive force ym7)Y?F'(t) is defined appro- o . .
priately, Eq.(2) and Eq.(5) will constitute a nonlinear dy- B. Quasistationary kicked particle map
namical system. Notice that if—0, Eq.(5) reduces to the In the strong friction regime, the relaxation time * is

Langevin's equation. In addition, E'(t) is a Gaussian ran- short, which implies that the ensemble of kicked particles
dom process, this equation describes Brownian motion.  settles down rapidly to a stationary distribution. Accordingly,
We are interested in a theory based on a series of discretae spatial positiorx of the particle possesses a variation of
snapshots of this system. The snapshot is a phase space pafdier kT/m)2y 1. If the force fieldvV’(x) does not change
immediately after the impulsive kicks. More specifically, the appreciably over such a spatial scal[x,(t)] can be
trajectories from the systeitEqs. (2) and (5)] will be re-  viewed as a constant from0to 7~ when 7>y~ 1, leading
corded only at time instant=n7", wherent"=n7+0"  to a simplification of the GKP maf20]. The resulting qua-
(andn7~=n7—07"). This renders the continuous time dy- sistationary version of the GKP map is termed the quasista-
namical system discrete; the snapshot at time 7" is ex-  tionary kicked particle(QKP) map, which is given as fol-
pressed as X,,p,). Similarly, we shall write F'((n7")  lows:
~F!(n7)=F,.
With this definition, we proceed to solve Eq8) and(5) Fn+1=G(Fp), (14
to obtain(refer to Appendix A for details

_ V' (Xq) _
- Pn+1=€ ""Pp— (1-e y7)+(,y7.)1/23|:n+1’
pn+1:e_”pn—e_”f e”V'[xy(t) Jdt+ (ymn) V2R L,
ot (15
(6)
1 Xn+1=Xnt 1(1 e "p VG T+ 1(e‘77 1))
Xn+1:Xn+Ejo+ pn(t)dt. (7) e Y " Y Y

(16)

From Eq.(6), we see that ymr)Y?F] is analogous to the where, without loss of generality, we have assumed1 in
stochastic fluctuation in Langevin’s formulation. However, inthe above as well as in subsequent derivation.
this paper, we are interested in the case wh?ql{és deter-
ministic in that its time evolution is governed by a nonlinear . THE PERRON-FROBENIUS APPROACH
dynamical mapG:
For the QKP map, let us impose the restrictipre1, so
Fri1=G(F,), (8) that the iterated solution of the particle’s position becomes
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1/2 n—1

SE Fiyi—
i=0

n-1 Notice that the potentiaV(x) is assumed to be analytic.
E V' (X). (17 Moreover, it is expressed as a functionyoft the next in-
1=0 stant, so that consecutive time instantare not involved

(7' T
Xne1=| = —
n+1 ¥ ¥

the momentum variable, we arrive at a simplified map relat-

) . ) _during the evaluation of the Perron-Frobenius equation later.
This suggests that the position variable can be expressed IFeexpressing Eq19) in the same vein, we have
. . . . . _ T 172 T T 2
ing the chaotic fluctuatioffr,, and the position variable, , X=X— (_) SF+([— _) )
Y Y Y

dependently of the momentum variable. By separating out
Frs1=G(Fn), (18) (22)

[ r\32 .
V' (X)— ;) sFV'(x)+0

12 r Putting these results into E0) and then Taylor expand the
sF,— (—)V’(xn). (199  Perron-Frobenius equation in termsfy, we obtain a per-
Y turbative version

Xpt1=Xpt

For the sake of notational convenience, we shall also express
this map succinctly asH,x)=f(F,x), where the overbar T v —
. pn+1( F !X) - o
represents the statésandx at the next instant. FeG Y/ |G/(F)]
Instead of examining a single trajectory from this map, let

%+(7v%)
— X
Y

us study an ensemble of trajectories, for example, those in B 1) 3/23F\/”(x) (F x—(z) Ust
the range F,x) to (F+dF,x+dx) at time (1+ 1) in phase y Prl ™2y
space. These trajectories are found to map deterministically a2

from the set of ranges (), x") to (FO+dF® xM +(I V/(X)— I) sF\/’(x))
+dx™) at timen through the relation,x) = f(F,x). This Y Y

has the implication that the density of trajectories in the in- 1 F\ 12
terval (F,x) to (F+dF,x+dx) at time (1+1)7 is the sum = 2 -~ ,—[pn(F,X)—(—) SFW
of the densities in the intervals F(),x") to (F® Fea 1® |G'(F) Y

+dF® x0 +dxM) at time n7, which can be expressed 2
mathematically as 4z V’(x)% £52F2%+V”(x)
4 ax 2 ax? P
poeaFX)= > d—lDfpn<F,x>, (20 ¥ 3pn #pn
(Fxer i(Fy [detDf] —| =] |2sFV'(x)—+sFV'(x)

X 07X2
where p,(F,x) is a probability measure that describes the 3 )
density of trajectories inK,x) atnr. 4 Esstﬁ Pn +SFV"(X)p,| +O Z) )

Equation(20) is called the Perron-Frobenius equation. It 6 Ix3 n y '
describes the conservation as well as evolution of the prob- 23

ability density p,, of a deterministic dynamical system. In
this section, we will show that by performing a perturbative ) ) _ _
expansion of the Perron-Frobenius equation, an equation of Following Beck [17], we introduce a continuous-time
the Fokker-Planck type shall arise from the nonlinear dynamsmooth suspensiop(F,x,t),

ics given by Egs(18) and(19). In the following derivation,

we will let 7/y to be small orr/ y— 0, which is a reasonable p(F.X,t):=pp(F,X). (249)
assumption in the strong friction regime. Witthy being a

small parameter, a perturbative expansion up till the ordeNote that this suspension is deemed to be true only at stro-
O((/y)*¥?) will be carried out, as this is sufficient for our poscopic timet=nr. Representing the left hand side of the
purpose. Perron-Frobenius equation by this suspension, which is as-

First, let us evaluate [detDf| of the Perron-Frobenius sumed to be analytic, a Taylor expansion yields
equation by employing Eq19):

. pn+1(F.X)=p(F,x,n7+7)

]
= = =|V"(x
|detDf| |G/ (F)| A

_ aJ _
=p(F,xt)+ Tﬁp(F,X,t)

+1¥02 F.x,t)+ 25

r [ g\32 o
1+(—)V”(x)—<—) sFV"(x)

|G"(F)] Y Y

(21)

Let us consider the following perturbative ansatz:
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p(F.x,0)=pO(F )+ g qO(F 1)
T e 3/2
+{=1g@Fx 0+ =] q®(F,xt
yq ( ) 5 g+ )
P 2
+0 —) ) (26)
Y

Substituting

pns1(FX)=

1/2

this ansatz into E(R5), we get

pO(F x,1)+ 72y 2qM(F x,1)

— J —
7y gPF X+ —pO(Fxb)

— J —
Y HEF XD+ y g (F x )

+0(72).

equation(23) becomes

pns1(FX)=

Equationg27) and(28) constitute perturbative expansions of

>

FEG71(5 |G’(F)|
(0)

1/2]
T [qu)
y

[p(0)+

aq(l)
X

q®—sF

1 a?qd 9p©
+V"(x)qV—2sFV'(x) ™

Pp@ 1
PY i

L

ax3

Hill

—sFV'(x)

—sFV"(x)p®@|+0

(28)

(27)

Also, in terms of Eq(26), the perturbative Perron-Frobenius

PHYSICAL REVIEW E69, 031103 (2004

O(7):

1
-1
yi®= X —
FeG 4F) |G'(F)|

[?q(l)
ax

y g -y IsF

+y V(%)

IX

(31)

(9q(2)
oX

1
G- 3

~3124(3) _ -3l
o y ¥y
FeG iR |G'(F)]

+,yf3/2vr(x) + _,}/73/232F2

X 2 &XZ

ﬁp(o)
+ 73y (x) gV — 29732 FV'(x) —

aq(l) 1 azq(l)
J

RO
-= 5~ 32533 p

ax3

—y ¥SFV () —

128
&)

71/2(9q

—y PBRVI(x)p @y =

(92p(0)
oxat |’

+y VsF (32)

where the overbar ip® andq® serves to indicate its de-

pendence or instead ofF. As we will show, these equa-
tions are important in the subsequent analysis as the lower
order solution to the perturbative equation shall determine
the next higher order solution, and leads to simplification in
the form of Fokker-Planck equations, which are essential for
the derivation of the directed current.

As the position spacr is of special interest in the analy-
sis on the macroscopic transport of the kicked particle, it is
appropriate to integrate out the fluctuatiénthrough mar-
ginal functions that depends or,{) in the following way:

Po(X,1) ::J dFpO(F,x,t) (33

the Perron-Frobenius equation. Comparing order by order in
these expansions, the following relations ensue. &or°):

— 1

0_ )
p= _ P, (29
FeG i(F) |G'(F)
0(71/2):
_— 1 ap®
D _ 1) _qgp
qP= >  — [q s . (30
FeG ¥R |G'(F)| 24

and

Qi(x,t)::f dFq(F,x,t), (34)

wherei=1,2,3.

Next, let us further assume th@tis a complete mapl7]
with phase space—1,1]. This assumption shall simplify the
set of equations given by Eq$29)—(32). To begin with,
notice that these equations are of the following form:
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. The point to note is that this seeming independence between

aFxH= 2 B(F,x,t), (359  F andx occurs forp®, which is the zeroth-order approxi-
FeG XF) |G (F)| mation to the true solutiop. In general, this independence

does not occur in the true solutign as is apparent from the
fact that the higher-order perturbative solutiopl&)=p(©
+ 3K, (71y)"2q" will not factorize with h(F). For ex-
mple, theq"’s of Egs.(30)—(32) are not separable into the
orm of h(F)Q;(x). However, in the next section, when the
map is restricted to be double symmetric, we show that per-
turbative solution up to first-order, i.ep{*), can be factor-

1 1 ized with h(F) owing to the symmetric properties of the
f_ldFa(F,X,t)Z f_ldFﬁ(F,X,t)- (36)  double symmetric map.

with a denoting the functions on the left hand side of Eqgs
(29)—(32) and B the functions on the right hand side.

A very useful property of complete maps is that they sat-
isfy the integration lemma, which states that the marginal
function of @ and that of8 are equal if Eq(35) is satisfied.
Mathematically, this is expressed as

The proof of this theorem relates to an elementary property IV. CHAOTIC FLUCTUATIONS FROM DOUBLE
of the Perron-Frobenius operafdr7]. SYMMETRIC MAPS
Applying the integration lemma to Eq29) leads to )
Po(X,t)=Py(x,t), which is trivial. However, when applied In a subsequent analysis, we shall focus on a supclass of
to Eq. (30), the resul{F)=0 is obtained. Thus, the ansatz € compléte maps, known as the double symmetric maps,
given by Eq.(26) applies only to maps with vanishing means Which possess the following properties:
[17]. In other words, the chaotic force should have zero bias.
We next apply the integration lemma to E§1) and ob- G(F)=G(-F), (40
tain
h(F)=h(—F). (41
-1 _ 1 A (1)
Y QX )=y Qa(X )~y Sa_x 71dFFq Examples of double symmetric maps are the even order
Tchebyscheff maps as well as maps that are their conjugates
[21]. DenotingG(") as theith-order Tchebyscheff map, the
functional form of this map can be derived from the follow-
ing iterative equation:

g 1
+y71V'(X)&Jilde(o)

tY iy 5] JAFFp © G (F)=2FGN(F) -G 1(F). (42)

e 1 o 9 1 © With GO(F)=1 and G®(F)=F, it is simple to deduce
+y TV (X)f dFp _Ef dFp™. that the second and fourth-order Tchebyscheff maps are
o - G@(F)=2F2—1 and G®W(F)=8F*—8F2+1, respec-
(37) tively. Note that the Ulam map is the negative of the second-
order Tchebyscheff map.
An important consequence of the properties of the double
symmetric map is the following result:

Based on the fact that ER9) can be solved by any function
of the form (see Appendix B

pO(F,x,t)=h(F)Py(x,1), (38)
F'h(F)=0, (43
Eq. (37) reduces to Feahm |G/ (F)]
2/2 2 '
s{FY) (?—Po(x,t)+ i(v & Po(X-t)) — iPO(x,t) with i being an odd integer, as it will lead to many simplifi-
2y ox? X at cations. This relation holds becausé-ifs a preimage, so is
-F.
f dFFq®, (39) If we were to apply Eq(43) with Eq. (38) to Eq.(30), we
7 28 notice that the second term of E80) no longer contributes,

and the equation simplifies to
which is a kind of inhomogeneous Fokker-Planck equation

for the zeroth-order probability distributioRq(X,t) due to 1
fluctuations from complete maps. In fact, ER9) is a W:
Smoluchowski equation with a source terms/+y) FeG 1/ |G'(F)|
X(alox)f1,dFFqW.

Finally, we would like to remark that Eq38) has the In this caseq® can be expressed in the separable f¢see
appearance thdt andx are statistically independent. This is Appendix B
rather surprising since depends deterministically dp, and
henceh(F) is perceivably the only independent distribution. a®(F,x,t)=h(F)Q (x,t). (45)

q®. (44)
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Inserting Eq.(45) into Eq. (39) and noting tha{F)=0, the

differential equation for the zeroth-order probability distribu-

tion reduces to, interestingly, the Smoluchowski equation

S(F?) &

J
2’)/ ﬁPo(x,t)—l— (?_X

V'(x)

J
Po(X,t)) - E Po(X,t) = O
(46)

PHYSICAL REVIEW E69, 031103 (2004

KT o2 b (xt
—_— + JE—
Y a2 1(x,t) X

V'(x)

J
Pl(X,t)) - E Pl(X,t)

J 1
— iy 9L [ dps?) (50
oxJ) -1

Remarkably, we again arrive at a Smoluchowski equation

with a source term. More significantly, this source term is

physically responsible for the flow of current in a spatially

Furthermore, for double symmetric maps, we can alsd€riodic potential, which will be shown in the next section. It

employ Eq.(38), (43), and(45) to simplify Eq.(32), leading
to

aq(z)
X

— 1
1@
yig®= >  —
FeG LF) |G'(F)

a 1
+ y*lv'(x)h(F)%Jr E«flsZth(F)

y q®¥—yIsF

?Q,

NG

an] 47

+y V' (0)h(F)Qy— h(F)— |-

By applying the integration lemma to E@7), we obtain

sXF?) 42 J (V’(x) ) J
2y ﬁQl(X,t)‘F& Y Qa(x,t) _EQl(Xat)
s d (1
_>2 2
% _ldFqu. (48)

With our interest in chaotic fluctuations based on double

symmetric map in the limit/ y—0, it is sufficient for us to

consider position probability distribution up till the first or-

derin7/vy, i.e.,

T 1/2
Pl(xlt):PO(X!t)+ ;) Ql(xit)! (49)
which comes fronjsee Eq.(26)]
P 1/2
pM(F,x,t)=pO(F,x,t)+ ;) aM(F,x,t)
=h(F)Py(x,1), (50)

resulting from Eqs(38) and (45). Then, by multiplying Eq.
(48) with (7/v)Y? and adding to Eq46), noting as well that

s?(F2)=2kT, we arrive at the inhomogeneous differential
equation for the first-order position probability distribution

of the particle

is also important to note from E@51) that in the limit7/y
—0, the position probability density function obeys the
Smoluchowski equation, withP(x)—Z ™ texg —V(X)/KT],
whereZ is the normalization constant.

V. DIRECTED CURRENT FROM PERIODIC POTENTIAL

In this section, we are concerned with the derivation of a
general analytical expression for the directed current, when
the potential is periodic, and the nonequilibrium chaotic fluc-
tuation is generated by double symmetric maps. To obtain a
mathematical description of the directed current, which oc-
curs in the steady state, we shall first s&t,/dt=0 and
integrate Eq(51) to get

KT 9Py V'(x) 1

—— P,= 72 *3’2J dFsFd?—Ny,

y ox y 1 Y . q( 1
(52)

whereN, is a constant of integration. This first-order differ-
ential equation can be solved, and the solution is given by

1/2
P, (x) =@ VOIKT T ifx VX )/KT
' vl KTJ-1

1
xf dFsFo?(F,x")dx’
-1

YNg [x

KT J-1 (53

eV(x’)/deX/ + NZ] '

in which the arbitrary constants of integratibiy andN, are
to be determined from the periodic boundary condition and
the normalization condition, respectively.

Next, let us assume that the potential field has a period of
2, or

V(x+2n)=V(x). (54

Hence,x can be treated as an angle variable with the conse-
quence that the densify must be periodi¢22], i.e.,

p(F,x+2n)=p(F,x). (55

This implies, from Eq(26), that
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pO(F,x+2n)=pO(F,x) (56) As the first term on the right of E459) must be zero due to
the periodicity ofP,(x), i.e.,
and
a0 (F x+2n)=q(F x) (57) TV v [t
’ *)- P f eV TJ dFsFd?(F,x")dx’
-1 -1

Note that the variablé has been suppressed as we are con-
cerned with the steady state. 1 VO KT o7

Then, applying Eq.(56) and Eq.(57) to Eq. (50), we _Vlefle dx’=0, (60)
obtain the periodic condition foP;(x):

Pl(X+2n)=P1(X). (58)
we have
Through Eq.(53), P;(x+2n) can be expressed in the fol-
lowing form (see Appendix €
1 1
1/2 V(x')/KT 2) ' ’
Py(x+2n)=e VoORT L [T Jl gV )/kT 7\ Y21 ffle JlldFSFq( (Fx)dx
1 kT Y -1 Nl:(_) —
1
) Y f V(X )KTgyr
X | dFsFd?(F,x")dx’ o
[IRISZRGES (6)
b VT
_’)/le_le dx +P1(X) (59) ThUS,
pe 1/2 1 X , 1
Pl(X):e—V(X)/kT (_) _j eV(X )/ij dFSFq(Z)(F,Xr)dX/
vy KkTJ-1 -1
1 , 1 X ,
5 [f eV(X )/ka dFSFdZ)(F,X/)dX’HJ eV(X )/deXl
(7) 1 ()1 -1 -1 N 62
L) = St
L jl V) KT 5!
-1
|
with N, obtained by normalizing this expression, i.e., _ r\12 T
S Pi(x)dx=1. J=1lim —) SF,— py V' (Xn)
Let us next proceed to determine the directed curdent n—
from Eq. (19). Defining the current as Y21 712
(2 e[ v
Y -1J-1 Y
J:=1lim <<Xn+1_xn>>u (63 r\12 r
n—e X[ pO(F,x)+ ;) aM(F,x)+0 ;) dxdF
where ((---)) means taking expectation with respect to  _ 1) 1/2J1 fl sF—(Z) 1/2V’(X)
(x,F) in the steady state and vy J-1)-a Y
1/2 T
~ F\12 , X| Po(x)h(F)+[—| Qi(x)h(F)+0O —) dxdF.
p(Fx)=p(Fx)+|—| q¥(Fx+0 —), (64) 7
4 4 (65
Noting that the last equation can be further simplified due to
we have (F)Y=0, and taking the leading order terms ifry, we are
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led to the following general expression for the directed curemploying Eq.(38), Eq. (43) and Eq.(45):
rent:

— 1
T 1 , 77 lq(z): E [ 77 1q(2)
J=—(;) f_lv (X)P1(x)dx, (66) Feo iR |G'(F)

: , - d 1 9*Py
which clearly shows that the current is connected to an en- +97I(F) —[V'(X)Po]+ =y~ 's?F2h(F)
semble average of the force figl]. Substituting Eq(62) in Ix 2 ax?
Eq. (66), we finally arrive at the central result of this paper, b

312 JPq
J=— T iJl V/(X)e—V(x)/kT _h(F)T]' (69)
vy KkTJ-1

We multiply Eg. (46) with h(F), and apply

. L Seec-ym[1/|G'(F)|] to both sides, yielding

X fev("/)’”j dFsFd?(F,x")dx’
-1 -1

]
“h(F)—[V'(x)P
2 |G’(F)|[y (F) o [V (X)Po]

1 ) 1 1 &P P
—| | e >’ka dFsFd?(F,x")dx’ —y 1s)(F2 > —h(F)—{ =
“ _ AFsF(F.X) +3 7 SFANF) ——h(F) =1 =0.
fx eV VKTt (70)
Xﬂ— dx. (67) Subtracting Eq.(69) by Eg. (70), a more concise relation
Lo g (@) i :
f V(X VKTyyr betweenq'<’ andq'“’ is attained as follows:
-1
__ 1
(2)= )4 = 2re2
The normalization constanks, in P;(x) does not contribute q Fea1m |G/(F)| [q * 2 h(F)sTF
to the current because
(T l Yo (Fo (7
- = V' (X)Nye™ d - :
5 f_l (X)Noe X P

’TkTN2
Y

We then proceed by making the following ansatzd&?:
q@=h(F)Qy(x,t) +SFh(F)Ry(X,1). (72)

)[e—WXV”]ll:o. (68)

Equat_ion(67) gives the first-order ana_llytical expression Applying this ansatz to Eq71) and after some simplifica-
for the directed current when the fluctuations come from th ion. we arrive at

class of chaotic double symmetric maps. It clearly shows that

the directed current is attributed to the source term — — 1

Jt,dFsFd? of the inhomogeneous Smoluchowski equa- SFh(F)R;=— Zl— G/ (F)|

tion (51), and also indicates that the current scaleds)*. FeG™(R)

However, we would like to emphasize that it is possible for o2 F2| %P,

the source term to vanish. In that case, the curdeshall X 7h(|:)52 1- 2| e | (73

depend on a scaling relation in terms dfy with an expo-

nent that is greater than 3/2. The exact details of this depen-, . :
dency require the evaluation of higher-order perturbativ which can be further reduced for fluctuations based on the

H 2__
equations, which turn out to be rather complicated. Ulam map(with o°=1/2) to

VI. TILTING RATCHET WITH SYMMETRIC COSINE SGFh(FIR
POTENTIALAND ASYMMETRIC FLUCTUATIONS 1 92 o
GENERATED BY THE ULAM MAP =— —5°G(F) 5 - h(F).
L . . . 4 x* Fec 1(F) |G'(F)|
The results obtained in the previous section are applicable
to the general class of double symmetric maps. In order to (74)

better understand the effect of such nonequilibrium chaoti

fluctuations on directed motion, it is necessary to solve th

source termf't ;dFsF(? for a typical case. In this section,

we present such a solution for a special double symmetric 1

map: the Ulam map. R,= — = (kT)2
To begin, let us reduce E¢B1) to the following form by 2

Tanceling terms in Eq(74) while noting thats=2kT in
?he case of Ulam map, we get

7*Py

NG (79
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Knowing that 1 2

f_ldFqu( (F.x)

Po(x)=2Z"te™ VOI/KT (76)

:Jl d|:s|:h(|:)Qz(x)+fl dFs?F2h(F)R,(X)
-1 -1

is the solution of Eq(46) in the steady state, with S
=s(F)Q2(x) +sYF“)Ry(x)

1 (kT)1/2 - " , V/(X)Z
7= j_lerV(x)/deX (77) =———e VOIKT vy (x) — T (80)
Moreover, this implies that
being the normalization constant, we deduce that X , 1
J f eV >’ka dFsFd?(F,x")dx’
-1 -1
7Py 1, V' (x)? (kT)Y2 [x V'(x')?
— T A=VX)KT| \y1 _ — "oy ’
P ZkTe V"(X) el (78) - f_l V"(x") T dx’ (81
and
Substituting this result into Eq75), we have 1 , 1
f gV(x )"‘Tf dFsFA?(F,x")dx’
-1 -1
1 V' (x)? KTYY2 r1 V' (x')2
Ry(X)= ————— e~ VOUKT \y(x) — } (79) _(kT) f oo VDT
zz(kT)lIZ kT Z . V7 (x") KT dx’. (82)

_ Substituting Eqs(81) and (82) into Eq. (62), the first-order
With these results, we are able to evaluate the source terposition probability distribution is found to have the follow-

St dFsFd?(F,x) as follows: ing form:
fl V//(X/)_ V,(X,)Z dX/fX eV(X")/deX//
ookt r \121 rx V' (X2 r\Y21 ), kT 1
oot [ L ey VO g
YkT) ZJ_-4 kT vkT) Z fl VKT g
-1
(83
|

As a result, according to E@66), the directed current of the In order to appreciate the symmetry breaking effect of the
particle activated by chaotic fluctuations from the Ulam mapnonequilibrium chaotic fluctuation, the periodic potential has
is given by to be spatially symmetric and time independent, with a re-

sulting spatial force field that averages out to zero. For the
sake of simplicity, let us select

3/2 i
J:_<1) Efl V' (x)e VOOlkT fx vi(x)
vyl Z)-a -1 (kT)¥2
’ 2] 1"
_ViX)” dx,_Jl Vi) V(x)= 2 (1- cosmx). 85)
3/2 1/2 2
(kT)*'= ] -1/ (kT)
V!(X/)Z_ JX eV(X')/deXr
-1
- 37 |9X =7 dx. (84) Evaluating each terms of E@83) in accordance with Eq.
(kT)™< | f V(X )KTqy (85), the following more explicit analytical expression for
-1 the first-order position probability distribution is determined:
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Although this scaling law applies to fluctuations from Ulam

11 cosmx/2kT ST map [see Eq.(87) and Fig. 3, it is conceivable that a sub-
Pi(X)=—7 ( ) = sinx elass of deuble symmetric map may generate the same.s'cal—
J eH COSTXI2KT 1y 2 ing behavior, leading to one universality class of nonequilib-
—1 rium chaotic fluctuations. In fact, for chaotic fluctuation
b o 5 ) based on the fourth-order Tchebyscheff nmiaf], a scaling
nT X usin DX meT with (7/v)%? was observed through numerical simulations
8kT 16kT 8kT (see Fig. 3 indicating a possible origination of another uni-
versality class. This suggests that in the vicinity of the zero
fx @ # cosmx'I2KTy y/ current fixed point, there may exist different routes to uni-
wla? ) ) versality due to chaotic noise from double symmetric maps.
T AT 11 . +Ny The eventual elucidation of these universality classes is an
f . ~p cosmX KT yr interesting subject for further research.

In another context, it is also interesting to investigate the

(86) manner in which] depends on the noise intenskyl of the
chaotic fluctuations, the outcome of which is shown in Fig.
4. Again, the agreement between analytical and numerical
simulation is observed. The figure shows that the current is a
convex function ofkT, implying the existence of an opti-
mum level for the chaotic drive. This result is physically
intuitive, with the current vanishes as the noise strength re-

( 7)3/2 wla? duces, and tailing off more slowly at increasing noise inten-

Keeping in mind that constant terms suchwar?/8kT and
N," will not contribute to the current, the first-order analyti-
cal expression for the directed current is given by

1 sity, analogous to results obtained from noise that is deter-
4(kT)Y? f gH CosTXI2KT ministic and temporally asymmetri@]. In both of these
-1 cases, directed current has been accounted for by the pres-
1 ence of odd higher-order correlations. But in this paper, we
% f gh COSTXI2KT gin v have gone one step further in examining the quantitative de-
-1 tails of how macroscopic order, in the form of unidirectional
particle flow, can be created out of microscopic chaotic fluc-
tuation.
% { sinmx— M i R sin 2mrx From a general perspective, th'e theoretical resglt given in
4kT 8kT Eq. (84) is not restricted to potentials that are spatially sym-
metric. By applying the same formalism to a well-known
asymmetric and periodic ratchet potenfia]

fx e H COS7TX'/2deXI u 1
_1 . . .
iy dx. 87) V(x)—E sin m(X—Xq) ]+ ZS|r{21-r(x—x0)]+d],

4+ —
1
2kT j le—,u COSWX'/ZdeX/ (89)

where X,=0.3807 andd=1.1009, the analytical result is
again validatedsee Fig. 4 More importantly, the asymme-
try in the potential was found to enhance the directed current

A comparison of our theoretical result, as given in Eq.in this case.
(87), with numerical simulation based on the QKP map, is N summary, this work provides exact analytical expres-
illustrated in Figs. 1 and 2. The figures show a close matcl§ions up to leading order iff y obtained from a perturbative
between the analytical and simulation results, thus verifying>erron-Frobenius approach. We hope that these theoretical
our theoretical approach. Indeed, a closer scrutiny on thed@sults will be useful for further research into noise-assisted
figures reveals that the correspondence becomes better @8ergy transduction processes in the realm of science and
7/y—0, which is to be expected. As discussed previouslyengineering, where nonequilibrium chaotic fluctuations may
when 7/y—0, Py(x)—Z lexp(~V(X)/KT), which implies b€ ubiquitous.
that the current vanishes in the scaling limit. Hence, our ana-
lytical and numerical results indicate a convergence to the ACKNOWLEDGMENTS
symmetric zero current state via scaling behavior of the lead-

ing order correction with respect te/y in the following We would like to thank P. Haggi and R. Klages for help-
way: ful discussions. We would also like to thank the Max Planck

Institute for Physics of Complex Systems for their hospital-
3 ity, where part of this work was carried out. We are also
J~<I) 89) grateful to the Wharton-SMU Research Center for the re-
' search grant.

VIl. DISCUSSION

031103-10



ANALYSIS OF THE ORIGIN OF DIRECTED CURREN.. .. PHYSICAL REVIEW E 69, 031103 (2004

<107 —95— : : : :
0 . ; :
R -10.5} |
-1F o N A -
X c
- %
Ne}
a 1150 ]
2t . . i
=7 - 5 4 3
0.0 0.4 0.8 12 16 2.0 In vy
T

FIG. 3. The linear regression betweenJland In7/y from nu-
FIG. 1. The current versus for the symmetric cosine potential merical simulation for the symmetric cosine potential when the cha-
based on analytical expressi(8¥) (solid curve with asterisksand otic fluctuation is based on the Ulam mémpen circleg and the
numerical simulationdotted curve with open circledor chaotic ~ fourth-order Tchebyscheff mafmpen triangles markersThe gra-
fluctuations from the Ulam map. The parameters in dimensionlesdient of the straight line is found to be 1.490 and 2.503, respec-
units arem=1.0, y=200.0, ©x=1.0, kT=0.2. The ensemble size tively. The parameters in dimensionless units lare 1.0, x=1.0,
used in the numerical simulation is&L0%, with an iteration length  kT=0.2. The ensemble size used in the numerical simulation is 5

of 5x 1P, X 10%, with an iteration length of &% 10°.
APPENDIX A dx p A1
a - a ’ ( )
In this appendix, we shall derive the discrete-time dy-
namical equations op,, and x,, from Egs.(2) and (5). For
nrt<t<(n+1)r, Eq. (5 does not contain the impulsive @__ ~V'(x) (A2)
force. In this case, the Hamilton’s equations become dt P '
x 107 x 1074
0 T T T T T T
s}
p —1F ‘“r o i
-1t = 1 _at 1
- e’// -
. £ 4
7 -3r 1
/// @
=2+ 7 4 -4+ . 4
2
/ ‘OO'
100 140 180 220 260 300 107 10° 10' 10°
Y kT
FIG. 2. The current versug for the symmetric cosine potential FIG. 4. The current versusT for the symmetric cosinésolid

based on analytical expression E§7) (solid curve with asterisks  curve and asymmetric ratchdtotted curvg potential based on
and numerical simulatiofdotted curve with open circlgsor cha- analytical expression Eq84) (crossep and numerical simulation
otic fluctuations from the Ulam map. The parameters in dimension{open circle§ for chaotic fluctuations from the Ulam map. The pa-
less units aren=1.0, 7=1.0, =1.0,kT=0.2. The ensemble size rameters in dimensionless units are=1.0, 7=1.0, y=200.0, u
used in the numerical simulation is<6L0*, with an iteration length  =1.0. The ensemble size used in the numerical simulation is 5
of 5x 10°. X 10*, with an iteration length of & 10°.
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where V'(x)=dV(x)/dx. The physical conditions at In this equation, we have used the notatign(t")
=nr" are given by =p(t"+n7). With the continuity condition given by Eq.
(A3), we obtain

X,=X(n7")=x(n7") (A3)
1 T
and Xn+1=Xn+ —J pn(t)dt. (A10)
mjot
pr=p(n7H)=p(n7")+(ymn) Y (n71)=p(nr")
+(ymn) VR (A4) APPENDIX B

. - . . In this appendix, we shall show that the solution of equa-
Equation(A3) states the continuity condition for the position tion

of the particle, while Eq.(A4) relates the discontinuous
change in momentum due to tldekick.

We first integrate Eq(A2) over the time intervahr™ (Fxt) S
. o 1/ =
$t<(n+l)7'. FEG_l(E) |G/(F)|

a(F,xt), (B1)

(n+1)7 (n+1)7 o . . . . .
f n+ d(e”'p)= —f n+ e V'(x)dt’. (A5)  with F derived from chaotic maps which are ergodic, takes
nr nr the separable forMi7]

The left hand side of the equation is equal to

a(F,x,t)=h(F)A(x,t), (B2)
e’ D7 p[(n+1)r - p(nr*). (A6)
where
After a rearrangement of the terms, the equation becomes
e ™ p[(n+1)7] A(x,t)zf dFa(F,x,t). (B3)
e _ (n+1)7~ '
=@ 7 —e y(n+1)7'f eyt Vr X dtl . o )
Pa nrt (x) To begin, it is essential to note that E®1) relates be-
- (D, tween two identical functions with respect to the variaties
=e 7 pn—f _ ettty d andF, while the values ok andt are the same at both sides
nT of the equation. As the chaotic maps in consideration are
- - T ) . ergodic, an invariant density(F) exists and isunique[18].
=e 77 py—e Wfo* e’ V'[xn(t")]dt". It also satisfies
In the last equation, we have performed a change of variable, .
t'—(n+1)7=t"— 7. Substituting the expression on the left h(F)= E B - h(F). (B4)
hand side with Eq(A4), we obtain Fee 4 |G'(F)

This implies that for Eq.(B1) to be true for allx andt,
a(F,x,t) must have the separable form given by Eg2).

N Otherwise, different values of andt will lead to different
+e "0 (ymn) V. (A7) functional forms oh(F), which contradict the uniqueness of
the invariant density.

e "' py=e 7 p—e” ”L: e”'V'[x,(1) ]dt

Sincee*”? =1+ y0"+ ..., and taking into account that

0* is an infinitesimally small number, we have
APPENDIX C

In this appendix, we shall derive EG9). This requires us

—a YT — A YT T yt\/! 4 1/21 L. . .
Pni1=€ "Pn—e€ fwe VIOt (ymD) o evaluate a few quantities. For the first quantity, we have

(A8)
- . o 1+2(n—1) ) 1
Similarly, we integrate Eq(A1) over the same time inter- f eV )KTqyr — f eVOIkTgy (C1
val ntt<t<(n+1)r and perform the change of variable —1+2(y—1) -

t'—(n+1)7=t"— 7. The result is

1 as a result of Eq(54) and a change of variable of the form
-1 L PN x=x"—2(n—1), wherey is an integer. This result is useful
X[((n+ 17 ]=xnt mfo+ Pn(t")dt". (A9) for the following calculation:
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eV )kTg ! techniques to the determination of HG.2) to the following

oo N iare1) whenx=x'—2(5—1). Using Eq(C3) and applying similar
f eV(x’)/deX/ — f
-1 7=1 integral, we obtain

—1+2(n—1)

X+2n ,
+ f eV(x )/deXr
—1+2n

1 X X+2n , 1
=n f eV(X")/deX// + f eV(X")/de X', f ) eV(X )/ka ld Es Fq(Z)( F,x' )dX,
-1 -1 — _

1 1
©2 =n f eVeIKT f dFsFA(F x")dx"
where a change of variable =x’'—2n has been performed -1 -1
on the last integral. In addition, E¢7) (with i =2) implies « 1
that + f 1eV<X”>/kT f 1d FsFG?(F,x")dx". (C4)

1+2(9-1) ) 1
f gV(x )"‘Tf dFsFA?(F,x")dx’
-1

—1+2(5—-1)

1 1 . ..
_ V(X)/KT 2) Employing the two evaluated quantiti€s2) and(C4) on
J' 1e fﬁldFqu( (Fxjdx €3 P,(x+2n) from Eq.(53), Eq. (59) is obtained.
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